Techniques Employed in the Physicochemical Characterization of Activated Carbons

نویسنده

  • Carlos J. Durán-Valle
چکیده

carbon from waste biomass. Journal of Hazardous Materials, Vol. 165, No. 1-3, (June 2009), pp. (481–485), ISSN 0304-3894. [39] Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S. & Ruangviriyachai, C. (2011). Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties Chemical Engineering Research and Design, Vol. 89, No. 3, (March 2011), pp. (335–340), ISSN 0263-8762. [40] Torregrosa, R. & Martín-Martínez, J.M. (1991). Activation of lignocellulosic materials: a comparison between chemoical, physical and combined activation in terms of porous texture. Fuel, Vol. 70, No. 10, (October 1991), pp. (1173-1180), ISSN 0016-2361. [41] Tseng, R. (2007). Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. Journal of Hazardous Materials, Vol. 147, No. 3, (August 2007), pp. (1020–1027), ISSN 0304-3894. [42] Valix, M., Cheung, W.H. & McKay, G. (2004). Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, Vol. 56, No. 5, (August 2004) pp. (493–501), ISSN 0045-6535. [43] Vargas, J.E., Gutierrez, L.G. & Moreno-Piraján, J.C. (2010). Preparation of activated carbons from seeds of Mucuna mutisiana by physical activation with steam. Journal of Analytical and Applied Pyrolysis, Vol. 89, No. 2, (April 2001), pp. (307–312), ISSN 01652370. [44] Vargas, A.M.M., Cazetta, A.L., Garcia, C.A., Moraes, J.C.G., Nogami, E.M., Lenzi, E., Costa W.F. & Almeida, V.C. (2011). Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods. Journal of Environmental Management, Vol. 92, No. 1, (January 2011), pp. (178-184), ISSN 0301-4797. [45] Warhurst, A.M., Fowler, G.D., McConnachie, G.L. & Pollard, S.J.T. (1997). Pore structure and adsorption characteristics of steam pyrolysis carbons from Moringa Oleifera. Carbon, Vol. 35, No. 8, (February 1997), pp. (1039-1045), ISSN 0008-6223. [46] Yagmur, E., Ozmak, M. & Aktas, Z. (2008). A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel, Vol. 87, No. 15-16, (November 2008), pp. (3278–3285), ISSN 0016-2361. [47] Yang, J. & Qiu, K. (2010). Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, Vol. 165, No. 1, (November 2010), pp. (209-217), ISSN 1385-8947. [48] Yavuz, R., Akyildiz, H., Karatepe N. & Çetinkaya, E. (2010). Influence of preparation conditions on porous structures of olive stone activated by H3PO4. Fuel Processing Technology, Vol. 91, No. 1, (January 2010), pp. (80-87), ISSN 0378-3820. [49] Zuo, S., Yang, J., Liu, J. & Cai, X. (2009). Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material. Fuel Processing Technology, Vol. 90, No. 7-8, (JulyAugust 2009), pp. (994-1001), ISSN 0378-3820. 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust

In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer–emmett–teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The d...

متن کامل

ADSORPTION OF p-NITROPHENOL IN THREE DIFFERENT ACTIVATED CARBONS AT DIFFERENT pH

Adsorption of p-Nitrophenol by three different activated carbons (F100, S.E.I. and B.D.H.) was carried out at 301 K and at controlled pH conditions. Two different adsorption models (Langmuir model and Freundlich model) were studied and compared. The adsorption capacity of the carbons depends on the Point of Zero Charge (PZC) and surface area of the carbons. Adsorption of the solute at higher pH...

متن کامل

Adsorption of nitrate from aqueous solution using activated carbon-supported Fe0, Fe2 (SO4)3, and FeSO4

In this laboratory scale study, impregnated almond shell activated carbon was used as adsorbent to investigate its feasibility for nitrate adsorption from aqueous medium. The effects of activated carbon dosage and contact time have been examined in batch experiments. Experimental data show that impregnated activated carbons by Fe0, Fe2 (SO4)3, and FeSO4 were more effective than virgin almond ac...

متن کامل

Data on changes in red wine phenolic compounds, headspace aroma compounds and sensory profile after treatment of red wines with activated carbons with different physicochemical characteristics

Data in this article presents the changes on phenolic compounds, headspace aroma composition and sensory profile of a red wine spiked with 4-ethylphenol and 4-ethylguaiacol and treated with seven activated carbons with different physicochemical characteristics, namely surface area, micropore volume and mesopore volume ("Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated car...

متن کامل

Characterization, Analysis and Comparison of Activated Carbons Issued from the Cryogenic and Ambient Grinding of Used Tyres

Activated carbons were obtained from the cryogenic grinding of used tyres using the liquid nitrogen as agent of freezing and compared to those obtained by the ambient grinding,. These products were prepared using the chemical activated method. It consists of impregnation of the powder obtained from the cryogrinded and ambient grinded used tyres by phosphoric acid, followed by a carbonization at...

متن کامل

Comparison of Adsorption Properties of Activated Carbons with Different Crops Residues as Precursors for Gold Cyanide Recovery: An Iranian Gold Industry Guide

Adsorption of gold cyanide on three types of Activated Carbons (ACs) has been investigated in batch and column adsorption conditions. Applied ACs have been derived from different crops precursors i.e., coconut shell (CAC), peach stone (PAC), and walnut shell (WAC). As peach stone and walnut shells are abundant agricultural residues in Iran, the activated carbons produced from these precurso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012